Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(2): eadj3825, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215197

RESUMEN

Practical techniques to identify heat routes at the nanoscale are required for the thermal control of microelectronic, thermoelectric, and photonic devices. Nanoscale thermometry using various approaches has been extensively investigated, yet a reliable method has not been finalized. We developed an original technique using thermal waves induced by a pulsed convergent electron beam in a scanning transmission electron microscopy (STEM) mode at room temperature. By quantifying the relative phase delay at each irradiated position, we demonstrate the heat transport within various samples with a spatial resolution of ~10 nm and a temperature resolution of 0.01 K. Phonon-surface scatterings were quantitatively confirmed due to the suppression of thermal diffusivity. The phonon-grain boundary scatterings and ballistic phonon transport near the pulsed convergent electron beam were also visualized.

2.
J Am Chem Soc ; 145(37): 20530-20538, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37677133

RESUMEN

The structure and configuration of reaction centers, which dominantly govern the catalytic behaviors, often undergo dynamic transformations under reaction conditions, yet little is known about how to exploit these features to favor the catalytic functions. Here, we demonstrate a facile light activation strategy over a TiO2-supported Cu catalyst to regulate the dynamic restructuring of Cu active sites during low-temperature methanol steam reforming. Under illumination, the thermally deactivated Cu/TiO2 undergoes structural restoration from inoperative Cu2O to the originally active metallic Cu caused by photoexcited charge carriers from TiO2, thereby leading to substantially enhanced activity and stability. Given the low-intensity solar irradiation, the optimized Cu/TiO2 displays a H2 production rate of 1724.1 µmol g-1 min-1, outperforming most of the conventional photocatalytic and thermocatalytic processes. Taking advantages of the strong light-matter-reactant interaction, we achieve in situ manipulation of the Cu active sites, suggesting the feasibility for real-time functionalization of catalysts.

3.
ACS Nano ; 17(13): 12305-12315, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37366239

RESUMEN

Monolayer ruthenate nanosheets obtained by exfoliating layered ruthenium oxide exhibit excellent electrical conductivity, redox activity, and catalytic activity, which render them suitable for advanced electronic and energy devices. However, to fully exploit the benefits, we require further structural insights into a complex polymorphic nature and diversity in relevant electronic states of two-dimensional (2D) ruthenate systems. In this study, the 2D structures, stability, and electronic states of 2D ruthenate are investigated on the basis of thermal and chemical phase engineering approaches. We reveal that contrary to a previous report, exfoliation of an oblique 1T phase precursor leads to nanosheets having an identical phase without exfoliation-induced phase transition to a 1H phase. The oblique 1T phase in the nanosheets is found to be metastable and, thus, transforms successively to a rectangular 1T phase upon heating. A phase-controllable synthesis via Co doping affords nanosheets with metastable rectangular and thermally stable hexagonal 1T phases at a Co content of 5-10 and 20 at%, respectively. The 1T phases show metallic electronic states, where the d-d optical transitions between the Ru 4d (t2g) orbital depend on the symmetry of the Ru framework. The Co doping in ruthenate nanosheets unexpectedly suppresses the redox and catalytic activities under acidic conditions. In contrast, the Co2+/3+ redox pair is activated and produces conductive nanosheets with high electrochemical capacitance in an alkaline condition.

4.
Sci Adv ; 8(49): eabo5686, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475802

RESUMEN

High-melting point alloy catalysts have been reported to be effective for the structure-controlled growth of single-wall carbon nanotubes (SWCNTs). However, some fundamental issues remain unclear because of the complex catalytic growth environment. Here, we directly investigated the active catalytic phase of Co-W-C alloy catalyst, the growth kinetics of CNTs, and their interfacial dynamics using closed-cell environmental transmission electron microscopy at atmospheric pressure. The alloy catalyst was precisely identified as a cubic η-carbide phase that remained unchanged during the whole CNT growth process. Rotations of the catalyst nanoparticles during CNT growth were observed, implying a weak interfacial interaction and undefined orientation dependence for the solid catalyst. Theoretical calculations suggested that the growth kinetics are determined by the diffusion of carbon atoms on the surface of the η-carbide catalyst and through the interface of the catalyst-CNT wall.

5.
ACS Nano ; 16(10): 16574-16583, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36228117

RESUMEN

Revealing the nucleation and growth mechanism of single-wall carbon nanotubes (SWCNTs) from faceted solid catalysts is crucial to the control of their structure and properties. However, due to the small size and complex growth environment, the early stages and dynamic process of SWCNT nucleation have rarely been directly revealed, especially under atmospheric conditions. Here, we report the atomic-resolved nucleation of SWCNTs from the faces of truncated octahedral Pt catalysts under atmospheric pressure using a transmission electron microscope equipped with a gas-cell. It was found that the graphene layers were initially formed preferentially on (111) surfaces, which then joined together to form an annular belt and a hemispherical cap, followed by the elongation of the SWCNT. Based on the observations, an annular belt assembly nucleation model and a possible chirality control mechanism are proposed for SWCNTs grown from well-faceted Pt catalysts, which provides useful guidance for the controlled synthesis of SWCNTs by catalyst design.

6.
Science ; 374(6575): 1616-1620, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941420

RESUMEN

Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.

7.
Natl Sci Rev ; 8(9): nwab012, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691733

RESUMEN

Microparticulate silicon (Si), normally shelled with carbons, features higher tap density and less interfacial side reactions compared to its nanosized counterpart, showing great potential to be applied as high-energy lithium-ion battery anodes. However, localized high stress generated during fabrication and particularly, under operating, could induce cracking of carbon shells and release pulverized nanoparticles, significantly deteriorating its electrochemical performance. Here we design a strong yet ductile carbon cage from an easily processing capillary shrinkage of graphene hydrogel followed by precise tailoring of inner voids. Such a structure, analog to the stable structure of plant cells, presents 'imperfection-tolerance' to volume variation of irregular Si microparticles, maintaining the electrode integrity over 1000 cycles with Coulombic efficiency over 99.5%. This design enables the use of a dense and thick (3 mAh cm-2) microparticulate Si anode with an ultra-high volumetric energy density of 1048 Wh L-1 achieved at pouch full-cell level coupled with a LiNi0.8Co0.1Mn0.1O2 cathode.

8.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508003

RESUMEN

We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.

9.
J Am Chem Soc ; 143(29): 11052-11062, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264655

RESUMEN

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

10.
ACS Nano ; 14(12): 16823-16831, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33275403

RESUMEN

Revealing the active phase and structure of catalyst nanoparticles (NPs) is crucial for understanding the growth mechanism and realizing the controlled synthesis of carbon nanotubes (CNTs). However, due to the high temperature and complex environment during CNT growth, precise identification of the active catalytic phase remains a great challenge. We investigated the phase evolution of cobalt (Co) catalyst NPs during the incubation, nucleation, and growth stages of CNTs under near-atmospheric pressure using an in situ close-cell environmental transmission electron microscope (ETEM). Strict statistical analysis of the electron diffractograms was performed to accurately identify the phases of the catalyst NPs. It was found that the NPs belong to an orthorhombic Co3C phase that remained unchanged during CNT growth, with errors in lattice spacing <5% and in angle <2°, despite changes in their morphology and orientation. Theoretical calculations further confirm that Co3C is the thermodynamically preferred phase during CNT growth, with the supply of carbon atoms through the surface and NP-CNT interfacial diffusion.

11.
Nanoscale ; 12(35): 18263-18268, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32857075

RESUMEN

The electronic transport and field emission properties of a single-crystalline GdB44Si2 nanowire are studied. The atomic structure and elemental composition of the GdB44Si2 nanowire are characterized by transmission electron microscopy (TEM) using atomic imaging, energy-dispersive X-ray spectroscopy (EDS), and electron energy-loss spectroscopic (EELS) mapping. The electrical conductivity of the single GdB44Si2 nanowire is in the range of 46.8-60.1 S m-1. The in situ TEM field emission measurement reveals that it has a low work function of 2.4 eV. To realize a converged electron emission, a field evaporation pretreatment was used to clean the emission surface and to make a sharpened tip. The field emission probe measurement results show that the electron emission from the sharp GdB44Si2 nanowire is converged to a single field emission spot and it has a work function of 2.6 eV which is in agreement with the in situ TEM measurement. The stability of field emission current is also very good with a fluctuation of 1.4% in 20 min. With a low work function and stable emission current, the GdB44Si2 nanowire shows great promise for field emission applications.

12.
Nanoscale ; 12(32): 16770-16774, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32608436

RESUMEN

A single hafnium carbide (HfC) nanowire field-induced electron emitter with a sharp tip apex is fabricated by Pt deposition and focused ion beam (FIB) milling. The structure of the electron emitter is characterized by scanning transmission electron microscopy (STEM) and atom probe tomography (APT). The HfC nanowire is single-crystalline with a thin oxide layer on its tip surface. The field emission properties are determined by using both in situ transmission electron microscopy (TEM) and a field-emission probe in a high-vacuum chamber. A high current of 173 nA was obtained at a low extraction voltage of 631 V with an emission gap of 5 mm. The emission current is stable at 60 nA for 100 min with a fluctuation of 0.7%. The deduced work function was 3.1 eV. It is suggested that the implanted Ga ions and the oxide layer induce more downward dipoles that are beneficial for lowering the work function and creating a stable surface. When the low keV FIB processing is applied, it takes within 30 minutes to finish a HfC nanowire emitter, establishing an efficient procedure for the preparation of nanowire emitters. These results provide a controllable and fast production method for the fabrication of single nanowire field-emission point electron sources.

13.
Sci Adv ; 6(12): eaay8163, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32219163

RESUMEN

The most effective approach to practical exploitation of the layered solids that often have unique valuable properties-such as graphene, clays, and other compounds-is by dispersion into colloidal suspensions of monolayers, called liquid exfoliation. This fundamentally expected behavior can be used to deposit monolayers on supports or to reassemble into hierarchical materials to produce, by design, catalysts, nanodevices, films, drug delivery systems, and other products. Zeolites have been known as extraordinary catalysts and sorbents with three-dimensional structures but emerged as an unexpected new class of layered solids contributing previously unknown valuable features: catalytically active layers with pores inside or across. The self-evident question of layered zeolite exfoliation has remained unresolved for three decades. Here, we report the first direct exfoliation of zeolites into suspension of monolayers as proof of the concept, which enables diverse applications including membranes and hierarchical catalysts with improved access.

14.
Sci Bull (Beijing) ; 65(18): 1563-1569, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36738074

RESUMEN

Increasing the density and thickness of electrodes is required to maximize the volumetric energy density of lithium-ion batteries for practical applications. However, dense and thick electrodes, especially high-mass-content (>50 wt%) silicon anodes, have poor mechanical stability due to the presence of a large number of unstable interfaces between the silicon and conducting components during cycling. Here we report a network of mechanically robust carbon cages produced by the capillary shrinkage of graphene hydrogels that can contain the silicon nanoparticles in the cages and stabilize the silicon/carbon interfaces. In situ transmission electron microscope characterizations including compression and tearing of the structure and lithiation-induced silicon expansion experiments, have provided insight into the excellent confinement and buffering ability of this interface-strengthened graphene-caged silicon nanoparticle anode material. Consequently, a dense and thick silicon anode with reduced thickness fluctuations has been shown to deliver both high volumetric (>1000 mAh cm-3) and areal (>6 mAh cm-2) capacities together with excellent cycling capability.

15.
Nano Lett ; 19(8): 4974-4980, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31265300

RESUMEN

Boron nitride nanotubes (BNNTs) are promising for mechanical applications owing to the high modulus, high strength, and inert chemical nature. However, up to now, precise evaluation of their elastic properties and their relation to defects have not been experimentally established. Herein, the intrinsic elastic modulus of BNNTs and its dependence on intrinsic and deliberately irradiation-induced extrinsic defects have been studied via an electric-field-induced high-order resonance technique inside a high-resolution transmission electron microscope (HRTEM). Resonances up to fourth order for normal modes and third order for parametric modes have been initiated in the cantilevered tubes, and the recorded frequencies are well consistent with the theoretical calculations with a discrepancy of ∼1%. The elastic moduli of the BNNTs measured from high-order resonance is about 906.2 GPa on average, with a standard deviation of 9.3%, which is found to be closely related to the intrinsic defect as cavities in the nanotube walls. Furthermore, electron irradiation in HRTEM has been used to study the effects of defects to elastic moduli and to evaluate the radiation resistance of the BNNTs. Along with an increase in the irradiation dose, the outer diameter has linearly reduced due to the knock-on effects. A defective shell with nearly constant thickness has been formed on the outer surface, and as a result, the elastic modulus decreases gradually to ∼662.9 GPa, which is still 3 times that of steel. Excellent intrinsic elastic properties and decent radiation-resistance prove that BNNTs could be a material of choice for applications in extreme environments, such as those existing in space.

16.
Nat Mater ; 18(1): 62-68, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455446

RESUMEN

Inorganic chalcogenides are traditional high-performance thermoelectric materials. However, they suffer from intrinsic brittleness and it is very difficult to obtain materials with both high thermoelectric ability and good flexibility. Here, we report a flexible thermoelectric material comprising highly ordered Bi2Te3 nanocrystals anchored on a single-walled carbon nanotube (SWCNT) network, where a crystallographic relationship exists between the Bi2Te3 <[Formula: see text]> orientation and SWCNT bundle axis. This material has a power factor of ~1,600 µW m-1 K-2 at room temperature, decreasing to 1,100 µW m-1 K-2 at 473 K. With a low in-plane lattice thermal conductivity of 0.26 ± 0.03 W m-1 K-1, a maximum thermoelectric figure of merit (ZT) of 0.89 at room temperature is achieved, originating from a strong phonon scattering effect. The origin of the excellent flexibility and thermoelectric performance of the Bi2Te3-SWCNT material is attributed, by experimental and computational evidence, to its crystal orientation, interface and nanopore structure. Our results provide insight into the design and fabrication of high-performance flexible thermoelectric materials.

17.
Nanoscale Adv ; 1(5): 1784-1790, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134225

RESUMEN

Mechanical resonators have wide applications in sensing bio-chemical substances, and provide an accurate method to measure the intrinsic elastic properties of oscillating materials. A high resonance order with high response frequency and a small resonator mass are critical for enhancing the sensitivity and precision. Here, we report on the realization and direct observation of high-order and high-frequency silicon nanowire (Si NW) resonators. By using an oscillating electric-field for inducing a mechanical resonance of single-crystalline Si NWs inside a transmission electron microscope (TEM), we observed resonance up to the 5th order, for both normal and parametric modes at ∼100 MHz frequencies. The precision of the resonant frequency was enhanced, as the deviation reduced from 3.14% at the 1st order to 0.25% at the 5th order, correlating with the increase of energy dissipation. The elastic modulus of Si NWs was measured to be ∼169 GPa in the [110] direction, and size scaling effects were found to be absent down to the ∼20 nm level.

18.
Ultramicroscopy ; 194: 108-116, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30107290

RESUMEN

Physical properties of carbon nanotubes (CNTs) are closely related to the atomic structure, i.e. the chirality. It is highly desirable to develop a technique to modify their chirality and control the resultant transport properties. Herein, we present an in situ transmission electron microscopy (TEM) probing method to monitor the chirality transition and transport properties of individual few-walled CNTs. The changes of tube structure including the chirality are stimulated by programmed bias pulses and associated Joule heating. The chirality change of each shell is analyzed by nanobeam electron diffraction. Supported by molecular dynamics simulations, a preferred chirality transition path is identified, consistent with the Stone-Wales defect formation and dislocation sliding mechanism. The electronic transport properties are measured along with the structural changes, via fabricating transistors using the individual nanotubes as the suspended channels. Metal-to-semiconductor transitions are observed along with the chirality changes as confirmed by both the electron diffraction and electrical measurements. Apart from providing an alternative route to control the chirality of CNTs, the present work demonstrates the rare possibility of obtaining the dynamic structure-properties relationships at the atomic and molecular levels.


Asunto(s)
Nanotubos de Carbono/química , Electrones , Microscopía Electrónica de Transmisión/métodos , Simulación de Dinámica Molecular , Semiconductores
19.
Sci Adv ; 4(5): eaap9264, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29736413

RESUMEN

Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm □-1 at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm □-1. Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A-1, and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics.

20.
Nat Mater ; 17(6): 535-542, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29686277

RESUMEN

Chemical vapour deposition of two-dimensional materials typically involves the conversion of vapour precursors to solid products in a vapour-solid-solid mode. Here, we report the vapour-liquid-solid growth of monolayer MoS2, yielding highly crystalline ribbons with a width of few tens to thousands of nanometres. This vapour-liquid-solid growth is triggered by the reaction between MoO3 and NaCl, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the 'crawling mode' when saturated with sulfur. The locally well-defined orientations of the ribbons reveal the regular horizontal motion of the droplets during growth. Using atomic-resolution scanning transmission electron microscopy and second harmonic generation microscopy, we show that the ribbons are grown homoepitaxially on monolayer MoS2 with predominantly 2H- or 3R-type stacking. Our findings highlight the prospects for the controlled growth of atomically thin nanostructure arrays for nanoelectronic devices and the development of unique mixed-dimensional structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...